16053(D)

- 0 DEC 201

B. Tech 3rd Semester Examination

Circuit Theory (NS)

EE-212

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each sections A, B, C and D. Section E is compulsory.

SECTION - A

1. (a) Verify the initial and final value theorem for e^{-t} ($t^2+\cos 3t$). (10)

(b) Draw the dual of the network as shown. (10)

(a) Obtain Thevenin's equivalent circuit for the network across
AB. (10)

2 16053

(b) Verify the reciprocity theorem by taking an example. (10)

SECTION - B

3. (a) Write the incidence matrix and tie set matrix for the given graph. (10)

(b) The reduced incidence matrix is given for a graph. Draw the graph and find number of possible trees for this graph.

$$A = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (10)

- 4. (a) Discuss the properties of Hurwitz polynomials. (10)
 - (b) Test whether the polynomial (s⁵+3s³+2s) is Hurwitz or not. (10)

SECTION - C

- 5. (a) For the given network, steady state is reached with the switch closed. The switch is opened at t=0. Obtain expression for i₁ (t). (Network given below). (10)
 - (b) Find $V_c(t)$ for t>0, if the switch is closed at t=0. (10)

Fig. for Q. 5(b)

[P.T.O.]

6. (a) For the given circuit determine (V_2/V_1) , if $I_1=0$. (10)

(b) Two inductors are connected in parallel. Their equivalent inductance, when the mutual inductance aids the self inductance is 6mH and it is 2mH when the mutual inductance opposes the self-inductance. If the ratio of the self inductances is 1:3 and the mutual inductance between the coils is 4mH; find the self inductances. (10)

SECTION - D

7. (a) Determine z-parameters for the network shown. (10)

- (b) Deduce the condition of reciprocity and symmetry in h-parameter network. (10)
- 8. (a) For the h-parameter equivalent network, find the voltage gain. Assume the load resistance to be R₁. (10)

(b) Express y-parameters in terms of transmission parameters. (10)

SECTION - E

- Attempt all.
 - (i) Find the final value of the function whose Laplace transform is $I_s = \frac{s+6}{s(s+3)}$.
 - (ii) Define Q-factor in AC circuit.
 - (iii) State compensation theorem.
 - (iv) Define initial value theorem.
 - (v) In a series RLC circuit V_R=3V, V_L=14V, V_C=10V. Find the input voltage to the circuit.
 - (vi) In a 3-Q system V_{YN} =100 \angle -120°V and V_{BN} =100 \angle 120°V. Then V_{YB} will _____V.
 - (vii) Find the transfer function of a low pass RC network.
 - (viii) Express h-parameters in terms of z-parameters.
 - (ix) Draw pole-zero plot for the function 7s/(s+4).
 - (x) Mention the conditions for positive realness of a function. $(2\times10=20)$